
SAT-Based Arithmetic Support for Alloy
César Cornejo

Department of Computer Science,
National University of Río Cuarto, Argentina

National Council for Scientific and Technical Research (CONICET), Argentina
ccornejo@dc.exa.unrc.edu.ar

ABSTRACT
Formal specifications in Alloy are organized around user-defined
data domains, associated with signatures, with almost no support
for built-in datatypes. This minimality in the built-in datatypes
provided by the language is one of its main features, as it contributes
to the automated analyzability of models. One of the few built-
in datatypes available in Alloy specifications are integers, whose
SAT-based treatment allows only for small bit-widths. In many
contexts, where relational datatypes dominate, the use of integers
may be auxiliary, e.g., in the use of cardinality constraints and other
features. However, as the applications of Alloy are increased, e.g.,
with the use of the language and its tool support as backend engine
for different analysis tasks, the provision of efficient support for
numerical datatypes becomes a need. In this work, we present our
current preliminary approach to providing an efficient, scalable
and user-friendly extension to Alloy, with arithmetic support for
numerical datatypes. Our implementation allows for arithmetic
with varying precisions, and is implemented via standard Alloy
constructions, thus resorting to SAT solving for resolving arithmetic
constraints in models.

ACM Reference Format:
César Cornejo. 2020. SAT-Based Arithmetic Support for Alloy. In 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’20), September 21–25, 2020, Virtual Event, Australia. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3324884.3415285

1 PROBLEM STATEMENT AND
MOTIVATIONS

Formal specification is an essential part of rigorous software devel-
opment methodologies, in particular those that through the pre-
ciseness of mathematical and logical formalisms, have the potential
of providing stronger guarantees of correct problem understanding
and description, and the correct functioning of software [2]. While
the advantages of formal methods to software development are
acknowledged, it is generally agreed that their practical application
requires mastering complex mathematical languages, as well as
reasoning techniques associated with these, that exceed the typical
experience and knowledge of the average software engineer. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3415285

issues can be tamed by developing formalisms that have simple con-
structions, closer to the abstractions that developers are accustomed
with, accompanied by automated analysis mechanisms, supported
by tools. Achieving these while at the same time attaining sufficient
expressive power to capture properties of interest, and providing
efficient analysis, is of course very challenging. Alloy is a formal
specification language that achieves an outstanding compromise
between the above-mentioned characteristics. It is expressive, it
has a simple syntax and relational semantics, easy to be mastered
by any trained software engineer, and provides efficient automated
analysis for specifications, via a reduction of property checking in
Alloy, to SAT solving [10]. Alloy follows the style of other model-
based specification languages, and models software as well as its
environment by describing data domains, properties of these, as
well as operations/transformations between these domains.

Alloy’s designers made an effort in keeping the language min-
imal, in particular in relation to built-in datatypes: the language
features almost no built-in datatype, so users need to introduce
ad-hoc data domains to capture intended properties of software.
This is extremely important in the analyzability of the language.
An exception to the “no built-in datatype” rule in Alloy is integers,
which are supported by the language, and its treatment is limited to
relatively small bit-widths (very small integer ranges). The reason
is that, during analysis, all integers within the defined bit-width are
explicitly present as atoms in the model’s universe, together with
all other atoms defined in the model [6]. The reason for this repre-
sentation has to do with the fact that a non-exhaustive enumeration
of integer atoms in a model may lead to satistiability outcomes in
analysis that contradict the intuition, e.g., preventing a formula
from holding only because the integer resulting from a fully legal
arithmetic operation does not belong to the universe of discourse.

For many specifications, the restricted support for numerical
datatypes is not a limitation, e.g., when the nature of the specifi-
cation makes the relational ad-hoc constructions dominate; but in
many cases, a more sophisticated provision of numerical datatypes
and arithmetic for these, is essential [7]. A clear scenario witness-
ing this situation arises in the increasing setting of Alloy being
used as a backend for automated analysis, e.g., for automated test
input generation [8] or bounded verification for higher-level pro-
gramming languages [3, 5], for extensions of Alloy for dynamic
behavior [4, 11], or as a backend for the analysis of fully-fledged
(informal) modeling languages [1]. In these contexts, a better sup-
port for numerical datatypes and arithmetic is essential, and is the
main motivation of our work. The problem is challenging because
it does not only comprise the integration of Alloy with SAT or SMT
based implementations for numerical domains; it has to be done in
a way that is faithful to the Alloy’s specification style, and preserves
the main intuitions in the use of the language. In particular, and

https://doi.org/10.1145/3324884.3415285
https://doi.org/10.1145/3324884.3415285

ASE ’20, September 21–25, 2020, Virtual Event, Australia César Cornejo

related to the issue described above, it should never be the case that
a formula has a counter intuitive analysis outcome, simply because
there is an insufficiently large scope (maximum number of atoms
of the corresponding domain) for numerical domains, within the
bit width being considered.

2 CURRENT DEVELOPMENT
As part of my PhD, I am working on extensions to Alloy to better
support software specification in particular contexts. A specific
extension of my work is based on DynAlloy [11], which extends the
language with dynamic logic elements, that allow one to specify
sequential programs annotated with pre- and post-conditions. This
language is in fact the vehicle to reduce program analysis tasks, such
as test generation and bounded verification, to SAT-based analysis
[5]. In analyzing programs in higher-level programming languages,
the support for numerical datatypes and arithmetic becomes crucial.

A particular trend in providing Alloywith support for arithmetic
is by interfacing with SMT solvers. This has numerous advantages,
in particular in relation to efficiency as it would profit from ad-
vances in SMT; and it also has known drawbacks, in particular the
limitation to decidable fragments of arithmetic constraints, e.g.,
linear constraints, and the non-trivial task of consistently merging
SAT-based Alloy analysis for relations, with SMT-based analysis for
numerical domains. Our approach instead attempts to capture nu-
merical domains and arithmetic constraints within standard Alloy,
and make use of the provided SAT-based analysis for arithmetic
constraint resolution, i.e., using the so called bit blasting approach
[9] to dealing with arithmetic. The idea is to provide a more power-
ful support for numerical datatypes for any application of Alloy,
not just for applications using it as an analysis backend. Thus,
our work does not only involve integrating Alloy with SAT-based
mechanisms for arithmetic resolution, but also designing how this
is going to be achieved, i.e., preserving the intuitive interpretation
of Alloy models with its current integer representation. Our work
requires the design of new Int and Float types, consistent with how
the former is currently dealt with in the language. Using SAT for
dealing with arithmetic will pay a price in efficiency, compared to
using SMT, but in the context of Alloy we believe it is better not to
be limited to decidable fragments of numerical domains.

The approach I am following essentially proposes to treat nu-
merical values as atoms of library signatures, which will represent
numbers as bit vectors, and will be equipped with operations (spec-
ified via predicates) for numerical manipulation. Libraries will pro-
vide different alternative precisions (8, 16, 32, 64-bit integers and
floating point numbers), an their corresponding representations
will follow the established IEEE standards. An example of such a
representation is shown in Fig. 1, where a library for 8-bit integers is
partially depicted. Signature Number8 defines the bit-vector integer
representation, and operations for integer arithmetic are captured
via predicates, following the usual low-level logical operators. A
main difference with integers as currently provided in Alloy is that
they will not constitute a fully-populated domain (currently, Al-
loy forces to contain atoms for every integer representable within
the selected bit-width); instead, numerical domains will be subject
to scope definitions for analysis, as any regular signature in the
language. Preliminary evaluations with our alternative show that

the profit in scalability is significant. We also aim at providing a
suitable visualization of numerical values, treating and operating
with these as numerical constants, and hiding their corresponding
bit-vector representations.

1 /** Representation of a Integer of 8 bits */
2 sig Number8 {
3 b00 : Bool ,
4 . . .
5 b07 : Bool
6 }
7
8 fun AdderCarry[a : Bool , b : Bool , cin : Bool] : Bool {
9 Or[And[a,b], And[cin , Xor[a,b]]]
10 }
11
12 fun AdderSum[a : Bool , b : Bool , cin : Bool] : Bool {
13 Xor[Xor[a, b], cin]
14 }
15
16 pred Sum[a : Number8 , b : Number8 , result : Number8] {
17 let c_0 = False |
18 let s_0 = AdderSum[a.b00 , b.b00 , c_0] |
19 . . .
20 result.b00 in s_0
21 . . .
22 }
23
24 pred Eq[a : Number8 , b : Number8] {
25 a.b00 = b.b00 and a.b01 = b.b01 and
26 a.b02 = b.b02 and a.b03 = b.b03 and
27 a.b04 = b.b04 and a.b05 = b.b05 and
28 a.b06 = b.b06 and a.b07 = b.b07
29 }
30 . . .

Figure 1: Part of an 8-bit Integer library.

3 FUTUREWORK
I have implemented Alloy libraries for integers and floating-point
numbers, as described in the previous section, for several precisions.
A first step of future work (besides implementing the libraries for
other precisions), which I have already started performing, is mak-
ing extensive experimental evaluation, to debug these implementa-
tions, perform and propose improvements, and overall evaluate the
performance of our approach. I am currently considering the Roops
benchmark [12] for this task. Once this stage is completed, my main
task will be on usability, extending Alloy’s parser in such a way
that allows the user to refer to numerical values using the usual
numeric notations, instead of having to resort to the low-level bit-
vector representation. As described earlier, our new representation
of numerical domains will have to guarantee that property satisfia-
bility/unsatisfiability is not compromised by the scope of numerical
domains, maintaining the semantics of arithmetic constraints in
Alloy, in its current version.

Besides providing arithmetic support for Alloy, our main goal
will be to incorporate these representations into the core of DynAl-
loy, and make it part of the translation from Java programs into
SAT-based analysis [5]. Finally, a longer-term objective is to replace
the low-level bit-blasting that SAT will be performing through our
characterization of numerical domains and operations, by the di-
rect use of the hardware’s arithmetic-logical unit. This will demand
tailoring the SAT solving process, e.g., to select variables for split-
ting, when these correspond to numerical values, from the least
significant bit onward, and calling the arithmetic-logical unit when
sufficient parts of the operands have been set.

SAT-Based Arithmetic Support for Alloy ASE ’20, September 21–25, 2020, Virtual Event, Australia

REFERENCES
[1] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. 2007.

UML2Alloy: A Challenging Model Transformation. In Model Driven Engineering
Languages and Systems, 10th International Conference, MoDELS 2007, Nashville,
USA, September 30 - October 5, 2007, Proceedings (Lecture Notes in Computer
Science), Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil (Eds.),
Vol. 4735. Springer, 436–450. https://doi.org/10.1007/978-3-540-75209-7_30

[2] Edmund M. Clarke and Jeannette M. Wing. 1996. Formal Methods: State of the
Art and Future Directions. ACM Comput. Surv. 28, 4 (1996), 626–643. https:
//doi.org/10.1145/242223.242257

[3] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular
verification of code with SAT. In Proceedings of the ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2006, Portland, Maine,
USA, July 17-20, 2006, Lori L. Pollock and Mauro Pezzè (Eds.). ACM, 109–120.
https://doi.org/10.1145/1146238.1146251

[4] Marcelo F. Frias, Juan P. Galeotti, Carlos G. López Pombo, and Nazareno M.
Aguirre. 2005. DynAlloy: Upgrading Alloy with Actions. In Proceedings of the
27th International Conference on Software Engineering (St. Louis, MO, USA) (ICSE
’05). ACM, New York, NY, USA, 442–451. https://doi.org/10.1145/1062455.1062535

[5] Juan P. Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and Marcelo F.
Frias. 2013. TACO: Efficient SAT-Based Bounded Verification Using Symmetry
Breaking and Tight Bounds. IEEE Trans. Software Eng. 39, 9 (2013), 1283–1307.
https://doi.org/10.1109/TSE.2013.15

[6] Daniel Jackson. 2006. Software Abstractions: Logic, Language, and Analysis. The
MIT Press.

[7] Daniel Jackson. 2019. Alloy: a language and tool for exploring software designs.
Commun. ACM 62, 9 (2019), 66–76. https://doi.org/10.1145/3338843

[8] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov, and Sarfraz
Khurshid. 2011. TestEra: A tool for testing Java programs using alloy spec-
ifications. In 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011, Perry Alexan-
der, Corina S. Pasareanu, and John G. Hosking (Eds.). IEEE Computer Society,
608–611. https://doi.org/10.1109/ASE.2011.6100137

[9] Daniel Kroening and Ofer Strichman. 2016. Decision Procedures - An Algorithmic
Point of View, Second Edition. Springer. https://doi.org/10.1007/978-3-662-50497-
0

[10] Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical
hardness to practical success. Commun. ACM 52, 8 (2009), 76–82. https://doi.
org/10.1145/1536616.1536637

[11] Germán Regis, César Cornejo, SimónGutiérrez Brida, Mariano Politano, Fernando
Raverta, Pablo Ponzio, Nazareno Aguirre, Juan Pablo Galeotti, and Marcelo F.
Frias. 2017. DynAlloy analyzer: a tool for the specification and analysis of alloy
models with dynamic behaviour. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017, Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea
Zisman (Eds.). ACM, 969–973. https://doi.org/10.1145/3106237.3122826

[12] Roops Benchmark: [n.d.]. https://github.com/taoxiease/roops

https://doi.org/10.1007/978-3-540-75209-7_30
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/1146238.1146251
https://doi.org/10.1145/1062455.1062535
https://doi.org/10.1109/TSE.2013.15
https://doi.org/10.1145/3338843
https://doi.org/10.1109/ASE.2011.6100137
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1145/1536616.1536637
https://doi.org/10.1145/1536616.1536637
https://doi.org/10.1145/3106237.3122826
https://github.com/taoxiease/roops

	Abstract
	1 Problem statement and motivations
	2 Current development
	3 Future work
	References

